1,826 research outputs found

    Output characteristics of tidal current power stations

    Get PDF
    With increasing targets being set for renewable-derived electricity generation, wind power is currently the preferred technology. It is widely accepted that due to the stochastic nature of wind, there is an upper limit to the capacity that can be accommodated within the electricity network before power quality is impeded. This paper demonstrates the potential of tidal energy as a predictable renewable technologies that can be developed for base load power generation and thus minimise the risk of compromising future power quality

    Computation of irradiance in a solar still by using a refined algorithm

    Get PDF
    A refined solar algorithm from the ESP-r system has been used to calculate the distribution of solar irradiation inside a basin-type solar still. In the approach, surface finish, view factors and multiple reflections are taken into consideration in the computation of the solar radiation that reaches the surface of the saline water in the distillation system. The algorithm was applied to a solar still tested at the University of Strathclyde in Glasgow (55 520 N, 4 150 W). Under the prevailing meteorological conditions, it was found that previous models overestimated the computed solar load on the saline water surface. The present modelling approach is demonstrated to exhibit a higher degree of accuracy than previous methods for irradiance distribution prediction, yielding new insights into approaches to solar still performance improvement. The modelling outcomes are presented and discussed

    Impact of using different models in practice - a case study with the simplified methods of ISO 13790 standard and detailed modelling programs

    Get PDF
    The updated ISO 13790 Standard is part of the new set of CEN Standards that supports the European Energy Performance of Buildings Directive (EPBD) requirement for a general framework for calculation of the energy consumption of buildings. The Standard sets out procedures for space heating and cooling energy calculations, allowing the use of three different methods: a simplified monthly quasi-steady state method, a simple-hourly method and detailed simulation. This paper examines the implications of allowing different methods to be used for assessing the energy usage. The research method used was to undertake a comparison of the various methods applied to a common building specification, with parametric analyses of variations in this specification. The paper discusses differences in results for heating and cooling requirements between the simplified methods and when a detailed simulation program (ESP-r) is used with constrained (according to the Standard) inputs and with a number of unconstrained inputs. The case where two different detailed simulation programs (ESP-r and EnergyPlus) are used in practice for the same building is also included and conclusions are drawn regarding the practical use of different detailed modelling programs against the simplified methods, as well as against each other

    Why tools for buildings and cities performance simulation need to evolve

    Get PDF
    Simulation tools offer increased opportunities for understanding building performance, but also present significant challenges. To overcome the '7 deadly sins' associated with performance simulation tools, Joe Clarke argues that structural changes are needed involving the roles of construction industry, professional bodies, researchers and software developers

    Contra-rotating marine current turbines : single point tethered floating system - stabilty and performance

    Get PDF
    The Energy Systems Research Unit within the Department of Mechanical Engineering at the University of Strathclyde has developed a novel contra-rotating tidal turbine (CoRMaT). A series of tank and sea tests have led to the development and deployment of a small stand-alone next generation tidal turbine. Novel aspects of this turbine include its single point compliant mooring system, direct drive open to sea permanent magnet generator, and two contra-rotating sets of rotor blades. The sea testing of the turbine off the west coast of Scotland in the Sound of Islay is described; the resulting stability of a single-point tethered device and power quality from the direct drive generator is reported and evaluated. It is noted that reasonably good moored turbine stability within a real tidal stream can be achieved with careful design; however even quite small instabilities have an effect on the output electrical power quality. Finally, the power take-off and delivery options for a 250kW production prototype are described and assessed

    The implementation of discrete demand management algorithms within energy systems modelling

    Get PDF
    Traditionally, demand side management (DSM) programs have been driven by utilities. With the prospect of growth in the utilization of building-integrated micro-generation, DSM offers opportunities for additional energy savings and CO2 emission reductions through better utilisation of local renewable energy resources. This paper examines the feasibility of using discreet demand management (DDM) to improve the supply/demand match. For many combinations of micro-generation and DDM controls, it is necessary to know the environmental conditions (i.e. temperatures and lighting levels) within the buildings being modelled. One method would be to embed all the renewable energy technologies and DDM algorithms within a detailed simulation program. An alternative method, investigated in this study, involves coupling two existing tools: a dynamic building simulation program (ESP-r) and a demand/supply matching program (MERIT) that incorporates DDM algorithms and renewable energy system technologies. These two programs interact at the time-step level and exchange calculated parameters (relating to loads, supply potentials and prevailing environmental conditions) to enable an evaluation of DDM techniques in terms of energy saving and occupant impact. This paper describes the technique and presents simulation results relating to a number of building cases

    Delivering building simulation information via new communication media

    Get PDF
    Often, the goal of understanding how the building works and the impact of design decisions is hampered by limitations in the presentation of performance data. Contemporary results display is often constrained to what was considered good practice some decades ago rather than in ways that preserve the richness of the underlying data. This paper reviews a framework for building simulation support that addresses these presentation limitations as well as making a start on issues related to distributed team working. The framework uses tools and communication protocols that enable concurrent information sharing and provide a richer set of options for understanding complex performance relationships

    Qualitative analysis of the usefulness of perceptualisation techniques in communicating building simulation outputs

    Get PDF
    This paper complements a previous publication in the Building Simulation Conference series by identifying where perceptualization techniques can improve data presentation and assist with the interpretation of the underlying performance message. The paper describes hypotheses that were tested in practice via a performance display prototype. Intended future work is summarised

    Energy and carbon performance of housing : upgrade analysis, energy labelling and national policy development

    Get PDF
    The area of policy formulation for the energy/carbon performance of housing is coming under increasing focus. A major challenge is to account for the large variation within national housing stocks relative to factors such as location, climate, age, construction, previous upgrades, appliance use and heating/cooling system types. Existing policy oriented tools rely on static calculation models that have limited ability to represent building behaviour and the impact of future changes in climate and technology. The switch to detailed simulation tools to address these limitations in the context of policy development has hitherto been focussed on the modelling of a small number of representative designs rather than dealing with the spread inherent in large housing stocks. To address these challenges, the ESRU Domestic Energy Model (EDEM) has been developed as a Web based tool built on detailed simulation models that have been aligned with the outcomes of national house condition surveys. On the basis of pragmatic inputs, EDEM is able to determine energy use and carbon emissions at any scale – from an individual dwelling to national housing stocks. The model was used at the behest of the Scottish Building Standards Agency and South Ayrshire Council to determine the impact of upgrades and the deployment of new and renewable energy systems. EDEM was also used to rate the energy/carbon performance of individual dwellings as required by the EU Directive on the Energy Performance of Buildings (EU, 2002). This paper describes the EDEM methodology and presents the findings from applications at different scales

    Thermal improvement of existing dwellings

    Get PDF
    This report describes the outcome from a study to determine the impact of energy efficiency measures applied to the Scottish housing stock. Assuming conventional property type classifications, the present performance of the housing stock is quantified using available survey data. Building simulation techniques were then employed to generate a Web-based, decision-support tool for use by policy makers to estimate the impact of deploying energy efficiency measures in different combinations over time. The process of tool formulation is described and an example is given of tool use to identify best-value retrofitting options while taking factors such as future climate change and improved standard of living into account
    corecore